博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ThreadPoolExecutor源码解析
阅读量:5037 次
发布时间:2019-06-12

本文共 11246 字,大约阅读时间需要 37 分钟。

LZ目前正在做一个批量生成报表的系统,需要定时批量生成多张报表,便考虑使用线程池来完成。JDK自带的Executors工具类只提供创建固定线程和可伸展但无上限的两个静态方法,并不能满足LZ想自定制线程池大小的要求。于是就直接深入了解下ThreadPoolExecutor类,以方便在工作中灵活使用以及为以后的扩展打下基础。

java doc中对ThreadPoolExecutor的说明是:

An ExecutorService that executes each submitted task using one of possibly several pooled threads, normally configured using Executors factory methods.

一个使用线程池来执行提交的任务的ExecutorService子类,正常通过Executors工具类中的工厂方法进行配置。

那我们就先看一下比较熟悉的Executors中的几个方法的实现代码:

Executors.newCachedThreadPool

public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,  60L, TimeUnit.SECONDS,  new SynchronousQueue
(), threadFactory);}

Executors.newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {    return new ThreadPoolExecutor(nThreads, nThreads,                                  0L, TimeUnit.MILLISECONDS,                                  new LinkedBlockingQueue
(), threadFactory);}

Executors.newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {    return new FinalizableDelegatedExecutorService        (new ThreadPoolExecutor(1, 1,                                0L, TimeUnit.MILLISECONDS,                                new LinkedBlockingQueue
(), threadFactory));}

可以看到其实这些方法都是通过构造方法创建了ThreadPoolExecutor对象,我们来看下具体的构造方法实现

public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue
workQueue, ThreadFactory threadFactory) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler);}

这里我们可以看到ThreadPoolExecutor中比较重要的一些参数,这些参数都是可以通过外部传入,对ThreadPoolExecutor内部进行控制。而ThreadPoolExecutor内部的工作机制究竟是怎样进行的呢?下面我们就揭开它的外衣,深入其中仔细探究。

1.ThreadPoolExecutor继承了AbstractExecutorService类

public class ThreadPoolExecutor extends AbstractExecutorService

2. ThreadPoolExecutor的重要变量参数

  • ctl: 用来标识线程池状态的重要参数,很多操作执行前都需要对线程池状态进行前置判断,以确定线程池状态是否正常

  • workQueue: 任务队列,用来在全部当前线程正在处理任务时存储提交来的任务

  • works: 存储所有工作线程

  • corePoolSize: 核心线程数

  • maximumPoolSize: 最大线程数

  • keepAliveTime: 空闲线程等待任务时间

  • threadFactory: 线程创建工厂

  • handler: 因线程池饱和或关闭触发的拒绝异常处理器

    //标识线程池控制状态  private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));  //线程池状态类型  //接受新的任务并处理队列中的任务  private static final int RUNNING= -1 << COUNT_BITS;  //不接受新任务但处理队列中的任务  private static final int SHUTDOWN   =  0 << COUNT_BITS;  //不接受新任务也不处理队列中的任务,且中断正在进行的任务  private static final int STOP   =  1 << COUNT_BITS;  //所有任务已经完结,工作线程数为0,并调用terminated方法  private static final int TIDYING=  2 << COUNT_BITS;  //terminated方法执行完成  private static final int TERMINATED =  3 << COUNT_BITS;  //任务队列,储存任务以提供给工作线程  private final BlockingQueue
    workQueue; //主要锁,设置workers和相关数据记录调用 private final ReentrantLock mainLock = new ReentrantLock(); //存储所有工作线程,设置时需要加mainLock锁 private final HashSet
    workers = new HashSet
    (); //线程池已达到的最大数,设置时需要加mainLock锁 private int largestPoolSize; //已完成任务数,设置时需要加mainLock锁 private long completedTaskCount; //线程创建工厂 private volatile ThreadFactory threadFactory; //因饱和或线程池关闭触发的拒绝异常处理器 private volatile RejectedExecutionHandler handler; //空闲线程等待任务时间(单位:纳秒),到时则会被销毁 private volatile long keepAliveTime; //默认为false,核心线程在空闲时一直存活 //如果为true,核心线程使用keepAliveTime参数来等待任务 private volatile boolean allowCoreThreadTimeOut; //核心线程数 private volatile int corePoolSize; //最大线程数 private volatile int maximumPoolSize; //默认拒绝异常处理器 private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();

3.execute方法,用户通过该方法提交任务给线程池。

处理任务分四种种情况:

  1. 如果当前工作线程数小于核心线程数,则创建新的线程来处理任务

  2. 如果当前工作线程等于核心线程数,新提交的任务存储到工作队列中

    重新检测线程池状态是否正常,如果不是运行状态,则移除任务,并处理拒绝异常
    如果线程池正常,工作线程数等于0,则增加工作线程

  3. 当工作队列达到最大容量,工作线程数没有达到最大线程数,增加新的工作线程,并处理任务

  4. 当工作线程数达到最大线程数,则使用拒绝异常处理器对任务进行处理

    public void execute(Runnable command) {     if (command == null)         throw new NullPointerException();     int c = ctl.get();     if (workerCountOf(c) < corePoolSize) {         if (addWorker(command, true))             return;         c = ctl.get();     }     if (isRunning(c) && workQueue.offer(command)) {         int recheck = ctl.get();         if (! isRunning(recheck) && remove(command))             reject(command);         else if (workerCountOf(recheck) == 0)             addWorker(null, false);     }     else if (!addWorker(command, false))         reject(command); }

4.线程池是怎么增加一个新的线程的呢?

接下来我们来看addWorker方法

  1. 双重for循环检查线程池是否适合增加新的线程
  2. 创建Worker对象并获得mainLock锁
  3. 再次检查状态,防止线程工厂失败或线程池关闭
  4. works增加worker对象,并更新largestPoolSize,释放锁
  5. 启用worker对象中的线程
  6. 由于并发原因,可能会出现线程尚未执行,但线程池正在关闭,因此可能会出现线程池关闭时,错过中断当前线程,因此再进行一次判断,如果线程池状态为关闭且当前线程未被中断,则手动中断它

    private boolean addWorker(Runnable firstTask, boolean core) {     retry:     for (;;) {         int c = ctl.get();         int rs = runStateOf(c);         // Check if queue empty only if necessary.         if (rs >= SHUTDOWN &&             ! (rs == SHUTDOWN &&                firstTask == null &&                ! workQueue.isEmpty()))             return false;         for (;;) {             int wc = workerCountOf(c);             if (wc >= CAPACITY ||                 wc >= (core ? corePoolSize : maximumPoolSize))                 return false;             if (compareAndIncrementWorkerCount(c))                 break retry;             c = ctl.get();  // Re-read ctl             if (runStateOf(c) != rs)                 continue retry;             // else CAS failed due to workerCount change; retry inner loop         }     }     Worker w = new Worker(firstTask);     Thread t = w.thread;     final ReentrantLock mainLock = this.mainLock;     mainLock.lock();     try {         // Recheck while holding lock.         // Back out on ThreadFactory failure or if         // shut down before lock acquired.         int c = ctl.get();         int rs = runStateOf(c);         if (t == null ||             (rs >= SHUTDOWN &&              ! (rs == SHUTDOWN &&                 firstTask == null))) {             decrementWorkerCount();             tryTerminate();             return false;         }         workers.add(w);         int s = workers.size();         if (s > largestPoolSize)             largestPoolSize = s;     } finally {         mainLock.unlock();     }     t.start();     // It is possible (but unlikely) for a thread to have been     // added to workers, but not yet started, during transition to     // STOP, which could result in a rare missed interrupt,     // because Thread.interrupt is not guaranteed to have any effect     // on a non-yet-started Thread (see Thread#interrupt).     if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())         t.interrupt();     return true; }

5.Worker类的实现

在addWorker方法中,我们并没有看到任务具体执行的操作,但是可以很明显地猜测到应该是在调用t.start()方法时进行调用。而线程t是来自于Worker对象,我们来看下内部类Worker(删除了部分代码)。

  1. Worker类继承自AbstractQueuedSynchronizer,实现了Runnable接口

  2. new Worker()时,通过ThreadFactory的newThread方法创建了一个新的线程

  3. 当调用addWorker中的t.start()时,其实触发的是run方法中的runWorker(this)

    private final class Worker     extends AbstractQueuedSynchronizer     implements Runnable {     /** Thread this worker is running in.  Null if factory fails. */     final Thread thread;     /** Initial task to run.  Possibly null. */     Runnable firstTask;     /** Per-thread task counter */     volatile long completedTasks;     /**      * Creates with given first task and thread from ThreadFactory.      * @param firstTask the first task (null if none)      */     Worker(Runnable firstTask) {         setState(-1); // inhibit interrupts until runWorker         this.firstTask = firstTask;         this.thread = getThreadFactory().newThread(this);     }     /** Delegates main run loop to outer runWorker  */     public void run() {         runWorker(this);     } }

6.runWorker方法是怎么触发任务执行的

  1. while循环保证了线程可以重复执行任务,如果firstTask执行完成后,通过getTask方法从任务队列中获取新的任务继续执行

  2. 执行前和执行后分别调用beforExecute和afterExecute两个钩子方法,可以用来在子类中自己实现,比如用于线程池监控

  3. 如果处理过程中出现意外情况,在finally中调用processWorkerExit进行处理,主要是对线程记录相关变量进行恢复,且处理当核心线程全部超时而任务队列中有新的任务时,重新增加新线程来处理任务

    final void runWorker(Worker w) {     Thread wt = Thread.currentThread();     Runnable task = w.firstTask;     w.firstTask = null;     w.unlock(); // allow interrupts     boolean completedAbruptly = true;     try {         while (task != null || (task = getTask()) != null) {             w.lock();             // If pool is stopping, ensure thread is interrupted;             // if not, ensure thread is not interrupted.  This             // requires a recheck in second case to deal with             // shutdownNow race while clearing interrupt             if ((runStateAtLeast(ctl.get(), STOP) ||                  (Thread.interrupted() &&                   runStateAtLeast(ctl.get(), STOP))) &&                 !wt.isInterrupted())                 wt.interrupt();             try {                 beforeExecute(wt, task);                 Throwable thrown = null;                 try {                     task.run();                 } catch (RuntimeException x) {                     thrown = x; throw x;                 } catch (Error x) {                     thrown = x; throw x;                 } catch (Throwable x) {                     thrown = x; throw new Error(x);                 } finally {                     afterExecute(task, thrown);                 }             } finally {                 task = null;                 w.completedTasks++;                 w.unlock();             }         }         completedAbruptly = false;     } finally {         processWorkerExit(w, completedAbruptly);     } }

7.getTask方法中是怎么获取任务队列中的任务的

  1. 判断线程池状态是否正常,根据timed = allowCoreThreadTimeout || wc > corePoolSize来决定队列获取任务的方式是指定keepAliveTime时间进行等待还是阻塞式等待

  2. 如果keepAliveTime超时,允许核心线程超时销毁或者当前线程池总量大于核心线程数,则getTask()返回null,回溯到runWorker方法中,则while循环结束,即线程执行完成,此线程将被销毁。

    private Runnable getTask() {     boolean timedOut = false; // Did the last poll() time out?     retry:     for (;;) {         int c = ctl.get();         int rs = runStateOf(c);         // Check if queue empty only if necessary.         if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {             decrementWorkerCount();             return null;         }         boolean timed;      // Are workers subject to culling?         for (;;) {             int wc = workerCountOf(c);             timed = allowCoreThreadTimeOut || wc > corePoolSize;             if (wc <= maximumPoolSize && ! (timedOut && timed))                 break;             if (compareAndDecrementWorkerCount(c))                 return null;             c = ctl.get();  // Re-read ctl             if (runStateOf(c) != rs)                 continue retry;             // else CAS failed due to workerCount change; retry inner loop         }         try {             Runnable r = timed ?                 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :                 workQueue.take();             if (r != null)                 return r;             timedOut = true;         } catch (InterruptedException retry) {             timedOut = false;         }     } }

转载于:https://www.cnblogs.com/lntea/p/4678069.html

你可能感兴趣的文章
P1160队列安排(模拟题,链表,结构体运用)
查看>>
5件事看你是否能活过80岁
查看>>
django的settings详解(2)
查看>>
基于LBS功能,Geohash在PHP中运用实例
查看>>
NoClassDefFoundError: org.ksoap2.transport.HttpTransportSE
查看>>
关于MVC与MVP的理解
查看>>
PHP preg_match正则表达式
查看>>
Windows2008R2安装Exchange 2010前必须要做的准备工作
查看>>
jquery 无刷新加载执行,显示数据
查看>>
了解栈(顺序栈)的实现方法
查看>>
bzoj 3732 Network
查看>>
对象数组
查看>>
Hadoop创建/删除文件夹出错
查看>>
差速移动机器人之建模与里程计
查看>>
Django学习笔记
查看>>
150. Evaluate Reverse Polish Notation
查看>>
03-THREE.JS GUI使用
查看>>
Java基础知识强化之IO流笔记70:Properties练习之 如何让猜数字小游戏只能玩5次的案例...
查看>>
Android(java)学习笔记86:Android提供打开各种文件的API接口:setDataAndType
查看>>
javaweb学习总结(三十四)——使用JDBC处理MySQL大数据
查看>>